ISU Electrical and Computer Engineering Archives

Secure Location-aware Communications in Energy-constrained Wireless Networks

Wei, Yawen (2011) Secure Location-aware Communications in Energy-constrained Wireless Networks. PhD thesis, Iowa State University.

Full text available as:

PDF - Registered users only - Requires Adobe Acrobat Reader or other PDF viewer.

Abstract

Wireless ad hoc network has enabled a variety of exciting civilian, industrial and military applications over the past few years. Among the many types of wireless ad hoc networks, Wireless Sensor Networks (WSNs) has gained popularity because of the technology development for manufacturing low-cost, low-power, multi-functional motes. Compared with traditional wireless network, location-aware communication is a very common communication pattern and is required by many applications in WSNs. For instance, in the geographical routing protocol, a sensor needs to know its own and its neighbors' locations to forward a packet properly to the next hop. The application-aware communications are vulnerable to many malicious attacks, ranging from passive eavesdropping to active spoofing, jamming, replaying, etc. Although research efforts have been devoted to secure communications in general, the properties of energy-constrained networks pose new technical challenges: First, the communicating nodes in the network are always unattended for long periods without physical maintenance, which makes their energy a premier resource. Second, the wireless devices usually have very limited hardware resources such as memory, computation capacity and communication range. Third, the number of nodes can be potentially of very high magnitude. Therefore, it is infeasible to utilize existing secure algorithms designed for conventional wireless networks, and innovative mechanisms should be designed in a way that can conserve power consumption, use inexpensive hardware and lightweight protocols, and accommodate with the scalability of the network. In this research, we aim at constructing a secure location-aware communication system for energy-constrained wireless network, and we take wireless sensor network as a concrete research scenario. Particularly, we identify three important problems as our research targets: (1) providing correct location estimations for sensors in presence of wormhole attacks and pollution attacks, (2) detecting location anomalies according to the application-specific requirements of the verification accuracy, and (3) preventing information leakage to eavesdroppers when using network coding for multicasting location information. Our contributions of the research are as follows: First, we propose two schemes to improve the availability and accuracy of location information of nodes. Then, we study monitoring and detection techniques and propose three lightweight schemes to detect location anomalies. Finally, we propose two network coding schemes which can effectively prevent information leakage to eavesdroppers. Simulation results demonstrate the effectiveness of our schemes in enhancing security of the system. Compared to previous works, our schemes are more lightweight in terms of hardware cost, computation overhead and communication consumptions, and thus are suitable for energy-constrained wireless networks.

EPrint Type:Thesis (PhD)
Subjects:Computer Engineering > INFORMATION SYSTEMS SECURITY & NETWORKING > Information Assurance
Computer Engineering > INFORMATION SYSTEMS SECURITY & NETWORKING > Computer Networking and Security
ID Code:614
Identification Number:Identification Number UNSPECIFIED
Deposited By:Mrs. Yawen Wei
Deposited On:15 April 2011

Archive Staff Only: edit this record